
At a typical pressure of 1010 hPa, this gives dA/dp = −0.018mrad/hPa and dG/dp =
0.12 msday−1/hPa.

5 Extracting tidal variations in gravity

We saw in Section 4.6.1 that the tidal variation in gravity will cause a periodic change

in going of at most ±10 milliseconds per day. This is tiny compared to the noise in the

measurements of going, which has an RMS value of about 600 ms/day. Nonetheless spectral

analysis, given a sufficiently long period of data, should be able to discern this periodic

variation from the noise. But how long is ‘sufficiently long’?

The first condition is related to the duration of the data. With a sample rate Fs and data

of duration T , the number of samples is N = FsT . The number of points in the spectrum

is also N , so the bin width ∆ f = Fs/N = 1/T . The tidal variation occurs at a frequency of

approximately 2 cycles per day, the frequency bins must be sufficiently narrow for this to be

distinguishable from lower frequency variations. For example, if we want to find the tidal

variation in the 10th bin, we need ∆ f = 0.2 cycles per day. This means T must be at least

5 days.

The second condition is that the tidal variation be visible above the noise. ‘White’ noise

has a flat spectrum (Figure 5.1), and it is a property of spectra that the area under the

spectrum is equal to the mean square (MS) of the time-domain signal. If the maximum

frequency content of the noise is FN and the amplitude of the spectrum is B2 then

Area under spectrum= 2× 2πFN × B2 =MSnoise

=⇒ B2 =
MSnoise

4πFN

The Fourier transform of the periodic tidal variation (with RMS value A) is A2

2
δ(ω+ω0) +

A2

2
δ(ω−ω0). In a real spectrum, we cannot have infinitely thin δ-functions, so the best

approximation will be that the spike falls into only one frequency bin of width ∆ω and

height C2, say. The areas of the bin and the δ-function must be equal, i.e.

C2∆ω=
A2

2

ˆ +∞
−∞

δ(ω−ω0)dω=
A2

2

−2πFN

A2

2
δ(ω+ω0)

B2

2πFN

ω

A2

2
δ(ω−ω0)

FIGURE 5.1: Spectrum of A
p

2cosωt and white noise, RMS= B2
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=⇒ C2 =
A2

2∆ω
=

A2

4π
·

1

∆ f
=

A2T

4π

In practical spectral analysis, a window is used to reduce the effect of having a finite-

length non-periodic signal. This reduces spectral leakage, at the expense of reducing the

peak height of a spike. For example, the Hann window reduces the peak value by one half.

So be able to discern the tidal variation in the spectrum above the noise, and including a

factor of one half to compensate for the window, we need

C2 > 2× B2

A2T

4π
>

2×MSnoise
4πFN

T >
2×MSnoise

A2FN

or, putting T = N/Fs,

N >
2×MSnoise

A2 ·
Fs

FN

If the noise has a wide frequency range, we could assume it has frequency content right up

to the Nyquist frequency, i.e. FN = Fnyq = Fs/2. Then

N >
4×MSnoise

A2

Putting values into this, the maximum RMS value of the tidal variation is A = 10p
2
=

7 ms/day, and that of the noise is 600 ms/day. So we need

N >
4× 6002

72 = 3× 104

which, at a sample rate of once every 3 seconds, is about 1 day. When the tidal variation

is at its minimum of about ±4 ms/day, the requirement is increased to N > 9× 104, or 3

days.

Next is the question of accuracy. Even if the noise was roughly ‘white,’ its spectrum will

itself be noisy because we are sampling it over a finite period. Newland [8, Ch.9] shows

that the expected accuracy of a real spectrum is

σ

m
≈

1
p

BeT

where m and σ are the mean and standard deviation of the spectrum, Be is the effective

bandwidth of the spectral window and T is the record length, as above. The effective

bandwidth depends on the shape of the window which is used, but it is given roughly by

Be ≈ 1/T . T can be increased without increasing Be, to get better accuracy, by averaging.

So, to obtain an accuracy of say σ/m = 0.1, we need BeT = 100, i.e. 100-fold averaging.
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FIGURE 5.2: Spectral analysis of simulated tidal variation.

With Be = 0.2 cycles per day as above, this means we require T = 500 days. This is clearly

quite a long time.

To get satisfactory results with less data, we could either require less accuracy or reduce

the level of the noise. An accuracy of 10% is probably more than sufficient to detect the

tidal variation, so we could settle for 33%, giving BeT = 9 and T = 45 days — this is much

more manageable.

The noise level can be reduced by calculating the going over a longer interval, but at

the expense of a reduced sample rate. For example, calculating the going every 30 seconds

instead of 3 seconds gives an RMS noise of about 280 ms / day. Thus the number of points

needed is

N >
4× 2802

72 = 6400

which is 2.2 days. So increasing the interval between data points requires a longer period

of data, even though the noise level is decreased.

5.1 Simulation

Simulated noise and tidal signals were used to do some virtual experimentation to check

the above results. The RMS value of the noise in going was estimated as 600 ms / day, and
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a tidal effect of between 4 and 10 ms / day peak was added in, along with a generic daily

variation. There are many combinations of possible windows, data lengths and averaging,

but the one shown in Figure 5.2 seems to give good results from minimal data, while

still reliably and clearly identifying the tidal signal: this simulation used 96 days of data

in 16 day chunks, averaged 6 times, using a Hamming window. This suggests that the

calculations above may underestimate the amount of data required to reliably identify the

tidal variation.

29


