At a typical pressure of 1010 hPa, this gives dA/dp = —0.018 mrad/hPa and dG/dp =
0.12msday ! /hPa.

5 Extracting tidal variations in gravity

We saw in Section 4.6.1 that the tidal variation in gravity will cause a periodic change
in going of at most £10 milliseconds per day. This is tiny compared to the noise in the
measurements of going, which has an RMS value of about 600 ms/day. Nonetheless spectral
analysis, given a sufficiently long period of data, should be able to discern this periodic
variation from the noise. But how long is ‘sufficiently long’?

The first condition is related to the duration of the data. With a sample rate F, and data
of duration T, the number of samples is N = F,T. The number of points in the spectrum
is also N, so the bin width Af = F,/N = 1/T. The tidal variation occurs at a frequency of
approximately 2 cycles per day, the frequency bins must be sufficiently narrow for this to be
distinguishable from lower frequency variations. For example, if we want to find the tidal
variation in the 10th bin, we need Af = 0.2 cycles per day. This means T must be at least
5 days.

The second condition is that the tidal variation be visible above the noise. ‘White’ noise
has a flat spectrum (Figure 5.1), and it is a property of spectra that the area under the
spectrum is equal to the mean square (MS) of the time-domain signal. If the maximum

frequency content of the noise is Fy, and the amplitude of the spectrum is B then

— 2 p—
Area under spectrum = 2 X 2tFy X B = MS pise

MSpoise

47nFy

—> B2:

The Fourier transform of the periodic tidal variation (with RMS value A) is %25(6() + wy) +
%25 (w — wy). In a real spectrum, we cannot have infinitely thin &-functions, so the best
approximation will be that the spike falls into only one frequency bin of width Aw and
height C2, say. The areas of the bin and the §-function must be equal, i.e.

) AZ +00 AZ
CAw:E 5(w—a)0)dw:E

%25(w+w0) %Zé(w—coo)

A B2 A

FIGURE 5.1: Spectrum of Av2 cos wt and white noise, RMS = B>
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In practical spectral analysis, a window is used to reduce the effect of having a finite-

— C?

length non-periodic signal. This reduces spectral leakage, at the expense of reducing the
peak height of a spike. For example, the Hann window reduces the peak value by one half.
So be able to discern the tidal variation in the spectrum above the noise, and including a

factor of one half to compensate for the window, we need

C?> 2 x B?
A’T  2XMSpgise

>
4 4mFy

2 x MS
T >

noise
2
A°Fy

or, putting T = N /F,,
2 X MSpoise  Fs
A2 Fy

If the noise has a wide frequency range, we could assume it has frequency content right up

N >

to the Nyquist frequency, i.e. Fy = F,,, = F;/2. Then

noise
AZ

4 x MS
N> ——>-

Putting values into this, the maximum RMS value of the tidal variation is A =

10
V2
7 ms/day, and that of the noise is 600 ms/day. So we need

4 x 6002 4
N>——=3x10
72
which, at a sample rate of once every 3 seconds, is about 1 day. When the tidal variation
is at its minimum of about +4 ms/day, the requirement is increased to N > 9 x 10, or 3
days.

Next is the question of accuracy. Even if the noise was roughly ‘white,’ its spectrum will
itself be noisy because we are sampling it over a finite period. Newland [8, Ch.9] shows

that the expected accuracy of a real spectrum is

21Q
2
‘H

B,T

e

where m and o are the mean and standard deviation of the spectrum, B, is the effective
bandwidth of the spectral window and T is the record length, as above. The effective
bandwidth depends on the shape of the window which is used, but it is given roughly by
B, ~ 1/T. T can be increased without increasing B,, to get better accuracy, by averaging.

So, to obtain an accuracy of say o/m = 0.1, we need B,T = 100, i.e. 100-fold averaging.
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FIGURE 5.2: Spectral analysis of simulated tidal variation.

With B, = 0.2 cycles per day as above, this means we require T = 500 days. This is clearly
quite a long time.

To get satisfactory results with less data, we could either require less accuracy or reduce
the level of the noise. An accuracy of 10% is probably more than sufficient to detect the
tidal variation, so we could settle for 33%, giving B,T =9 and T = 45 days — this is much
more manageable.

The noise level can be reduced by calculating the going over a longer interval, but at
the expense of a reduced sample rate. For example, calculating the going every 30 seconds
instead of 3 seconds gives an RMS noise of about 280 ms / day. Thus the number of points
needed is

4 x 2802

which is 2.2 days. So increasing the interval between data points requires a longer period
of data, even though the noise level is decreased.

5.1 Simulation

Simulated noise and tidal signals were used to do some virtual experimentation to check

the above results. The RMS value of the noise in going was estimated as 600 ms / day, and

28



a tidal effect of between 4 and 10 ms / day peak was added in, along with a generic daily
variation. There are many combinations of possible windows, data lengths and averaging,
but the one shown in Figure 5.2 seems to give good results from minimal data, while
still reliably and clearly identifying the tidal signal: this simulation used 96 days of data
in 16 day chunks, averaged 6 times, using a Hamming window. This suggests that the
calculations above may underestimate the amount of data required to reliably identify the

tidal variation.
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