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Notes:

1. The filtered outputs are intended to be connected to the datalogger. The square wave outputs
should be used with a soundcard because it has its own filtering.

2. The PPS signal rises to indicate the start of each second, but because of the inverting amplifier
this corresponds to a falling edge in the filtered output.

FIGURE A.1: Interface circuit, providing power supply to GPS and IR sensor, high-pass filtering

and serial interface to GPS.
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B Derivation of the period of a non-linear pendulum

The equation of motion of a pendulum is

θ̈ +ω2
0 sinθ = 0 (B.1)

where ω2
0 = g/L. For small oscillations, sinθ ≈ θ and the motion is harmonic with angular

frequency ω0. If the angle of swing is not small, the angular frequency will become ω, but

as a first approximation the motion can still be assumed to be sinusoidal, so θ ≈ Asinωt.

Going back to the equation of motion (B.1), the sinθ term may be expanded to give

θ̈ +ω2
0

�

θ −
θ 3

6
+ . . .

�

= 0 (B.2)

−Aω2 sinωt +ω2
0

�

Asinωt −
A3 sin3ωt

6
+ . . .

�

= 0 (B.3)

sin3ωt may be expanded as a Fourier series:

sin3ωt = a1 sinωt + a2 sin 2ωt + . . .

where the Fourier coefficients an are given by

an =
2

π

ˆ π

0
f (θ) sin(nθ)dθ

∴ a1 =
2

π

ˆ π

0
sin4ωt dt =

2

π
·

3π

8
=

3

4

∴ sin3ωt =
3

4
sinωt + . . . (B.4)

So, putting (B.4) into (B.3), the approximate equation of motion is

−Aω2 sinωt +ω2
0

�

Asinωt −
A3

6
·

3sinωt

4

�

≈ 0

∴ ω2 ≈ω2
0

�

1−
A2

8

�

(B.5)

And hence, since T = 2π/ω,

T ≈ T0

�

1+
A2

16

�

(B.6)
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C Temperature compensation

C.1 Response to ramp input

Using the model of a temperature compensated pendulum shown in Figure 4.4, we can

derive the response of the pendulum to a transient change in temperature, for example a

ramp. Assume that this change in ambient temperature affects the temperature of the outer

layer T1 directly, so the input is

T1 = T0+
dT1

d t
t

If the layers are linked by a thermal resistance R, and have heat capacity mcp, the heat flow

between them is

Q =
T1− T2

R
and the heat flow into the inner layer is

Q = mcp

dT2

d t

Equating these gives the governing equation:

τ
dT2

d t
+ T2 = T1 where τ= mcpR

which can be solved (e.g. by Laplace transforms) to give the response to a ramp in T1,

T2 =
dT1

d t

�

(t −τ) +τe−t/τ
�

+ T0

Thus the temperature difference, once steady state is reached, is

T1− T2 = τ
dT1

d t

C.2 Estimation of constants

The steel (density 7800 kg/m3, heat capacity 460 J/kgK, expansion coefficient 13×10−6 K−1)

outer layer of the pendulum is approximately 35mm diameter, 2.2m long and 3mm thick.

Its mass is

m= ρπdl t = 5.7 kg

The thermal resistance R consists of the surface convection resistances (very variable,

but say1 about 0.2 mK/W) and the air itself (conductivity2 0.0257 W/mK). The air gap is

approximately 1mm, giving

Resistivity
1

U
= 2× 0.2+

1× 10−3

0.0257
= 0.44 m2K/W

1from 4D11 Building Physics notes
2from http://www.engineeringtoolbox.com/
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=⇒ Resistance R=
1

UA
=

0.44

π× 28× 10−3× 2.2
= 2.3 K/W

So the time constant is

τ= mcpR= 5.7× 460× 2.0= 6030 seconds≈ 1.5 hours

The steady temperature difference is given by

T1− T2 = τ
dT1

d t

so the change in going caused by this is

∆G =
−∆T

T
=
−1

2
·
∆L

L
=−

α

2
(T1− T2)

=
−ατ

2

dT1

d t

= −k
dT1

d t

=⇒ k =
1

2
· 13× 10−6 · 6030≈ 40 ms/degree

D Derivation of gravitational effects

Consider first the effect of the Moon alone; the derivation below applies equally to the

effect of the Sun. The are two relevant forces which act on an object on the Earth: the

gravitational pull of the Moon, and the D’Alembert force corresponding to the centripetal

acceleration of the Earth’s orbit with the Moon.

P

F N

r

Moon

r1

Ω

Earth

R
Rn− ri

n

i

φ

FIGURE D.1: Plan view of Earth and Moon: points F, N and P lie on the equator.

45



Gravitational pull Using Newton’s Law of Gravitation, F = GMm/r2, the force felt by a

point on the Earth varies with the inverse square of distance. As a vector, the force felt by

an object of unit mass at point P is

F=
GM

|Rn− ri|2
·
−(Rn− ri)
|Rn− ri|

and using the cosine rule,

|Rn− ri|2 = R2+ r2− 2rR cosφ

so

F=
−GM(Rn− ri)

�

R2+ r2− 2rR cosφ
�3/2

If R� r, then we can use the binomial expansion to give

�

R2+ r2− 2rR cosφ
�−3/2

≈ r−3

�

1−
3

2

�

R2

r2 − 2
R

r
cosφ

��

= r−3

�

1+ 3
R

r
cosφ

�

+O
¦

(R/r)2
©

We are interested in the downwards force, which is given by

F · (−n) =
GM

r3

�

1+ 3
R

r
cosφ

�

�

R− r cosφ
�

+O
¦

(R/r)2
©

=
GM

r2

�

R

r
− cosφ − 3

R

r
cos2φ

�

+O
¦

(R/r)2
©

≈
−GM

r2

�

1

2

R

r
+ cosφ +

3

2

R

r
cos 2φ

�

(since n · i= cosφ).

Centrifugal force Since the Earth and Moon are orbiting each other, about a centre of

rotation (the “barycentre”) located somewhere between them, the gravitational force be-

tween them must balance the centrifugal force of their rotation, i.e.

F =
GMeMm

r2 = Mer1Ω
2 = Mmr2Ω

2

=⇒ r1Ω
2 =

GMm

r2

Now consider the point P, whose position relative to the barycentre is

rP = Rn− r1i

=⇒ r̈P = −Ω2Rn+Ω2r1i=−Ω2rP

∴ D’Alembert force F = mΩ2rP
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So the downwards force experienced by an object of unit mass at P is

Ω2rP · (−n) = −Ω2 �R− r1 cosφ
�

= r1Ω
2

�

cosφ −
R

r1

�

=
GMm

r2

�

cosφ −
R

r1

�

Total force So, the total downwards force per unit mass is

Fdown =
−GMm

r2

�

1

2

R

r
+ cosφ +

3

2

R

r
cos2φ

�

+
GMm

r2

�

cosφ −
R

r1

�

=
−GMm

r2

�

1

2

R

r
+

3

2

R

r
cos 2φ +

R

r1

�

=
−1

2
·

GMm

r2

R

r

�

1+ 3 cos2φ +
r

r1

�

A downwards force per unit mass is effectively a change in gravity, so taking ∆g = Fdown

and g = (GMe)/R2,

∆g

g
=

R2

GMe
×
−GMmR

r3

�

1+ 3cos 2φ +
r

r1

�

=
Mm

Me

�

R

r

�3�

1+ 3cos 2φ +
r

r1

�

Finally, the barycentre (which is the centre of mass of the Earth-Moon system) can be

located by considering ‘moments of mass’ around the Earth:

r1(Mm+Me) = rMm =⇒
r

r1
=

Mm+Me

Mm
=
λ+ 1

λ

where λ= Mm/Me. So

∆g

g
= λ

�

R

r

�3�

1+ 3cos 2φ +
λ+ 1

λ

�

=
�

R

r

�3
�

1+ 2λ+ 3λ cos 2φ
�

The change in gravity due to the Moon is superimposed on that due to the Sun, to give the

beating effect shown in Figure 4.5.

E Risk assessment retrospective

This project is almost entirely computer-based, and no specific hazards were identified apart

from the usual hazards of such work. These were addressed by ensuring computer working

areas were arranged comfortably, and in retrospect this seems to have been an appropriate

assessment.
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